K8M
AI-driven lightweight Kubernetes dashboard with integrated MCP and multi-cluster management.
Key Features
Use Cases
README
k8m 是一款AI驱动的 Mini Kubernetes AI Dashboard 轻量级控制台工具,专为简化集群管理设计。它基于 AMIS 构建,并通过
kom 作为 Kubernetes API 客户端,k8m 内置了
Qwen2.5-Coder-7B,支持deepseek-ai/DeepSeek-R1-Distill-Qwen-7B模型
模型交互能力,同时支持接入您自己的私有化大模型(包括ollama)。
演示DEMO
DEMO DEMO-InCluster模式 用户名密码 demo/demo
文档
- 详细的配置和使用说明请参考文档。
- 更新日志请参考更新日志。
- 如需自定义大模型参数、配置私有化大模型,请参考自托管/自定义大模型支持 和 Ollama配置。
- 详细的配置选项说明请参考配置选项说明。
- 数据库配置请参考数据库配置说明。
- DeepWiki 文档:开发设计文档
主要特点
- 迷你化设计:所有功能整合在一个单一的可执行文件中,部署便捷,使用简单。
- 简便易用:友好的用户界面和直观的操作流程,让 Kubernetes 管理更加轻松。支持标准k8s、aws eks、k3s、kind、k0s等集群类型。
- 高效性能:后端采用 Golang 构建,前端基于百度 AMIS,保证资源利用率高、响应速度快。
- AI驱动融合 :基于ChatGPT实现划词解释、资源指南、YAML属性自动翻译、Describe信息解读、日志AI问诊、运行命令推荐,并集成了k8s-gpt 功能,实现中文展现,为管理k8s提供智能化支持。
- MCP集成:可视化管理MCP,实现大模型调用Tools,内置k8s多集群MCP工具49种,可组合实现超百种集群操作,可作为MCP Server 供其他大模型软件使用。轻松实现大模型管理k8s。可详细记录每一次MCP调用。支持mcp.so主流服务。
- MCP权限打通:多集群管理权限与MCP大模型调用权限打通,一句话概述:谁使用大模型,就用谁的权限执行MCP。安全使用,无后顾之忧,避免操作越权。
- 多集群管理:自动识别集群内部使用InCluster模式,配置kubeconfig路径后自动扫描同级目录下的配置文件,同时注册管理多个集群。
- 多集群权限管理:支持对用户、用户组进行授权,可按集群授权,包括集群只读、Exec命令、集群管理员三种权限。对用户组授权后,组内用户均获得相应授权。支持设置命名空间黑白名单。
- 支持k8s最新特性:支持APIGateway、OpenKruise等功能特性。
- Pod 文件管理:支持 Pod 内文件的浏览、编辑、上传、下载、删除,简化日常操作。
- Pod 运行管理:支持实时查看 Pod 日志,下载日志,并在 Pod 内直接执行 Shell 命令。支持grep -A -B高亮搜索
- API开放:支持创建API KEY,从第三方外部访问,提供swagger接口管理页面。
- 集群巡检支持:支持定时巡检、自定义巡检规则,支持lua脚本规则。支持发送到钉钉群、微信群、飞书群。
- CRD 管理:可自动发现并管理 CRD 资源,提高工作效率。
- Helm 市场:支持Helm自由添加仓库,一键安装、卸载、升级 Helm 应用,支持自动更新。
- 跨平台支持:兼容 Linux、macOS 和 Windows,并支持 x86、ARM 等多种架构,确保多平台无缝运行。
- 多数据库支持:支持SQLite、MySql、PostgreSql等多种数据库。
- 完全开源:开放所有源码,无任何限制,可自由定制和扩展,可商业使用。
k8m 的设计理念是“AI驱动,轻便高效,化繁为简”,它帮助开发者和运维人员快速上手,轻松管理 Kubernetes 集群。
运行
- 下载:从 GitHub release 下载最新版本。
- 运行:使用
./k8m命令启动,访问http://127.0.0.1:3618。 - 登录用户名密码:
- 用户名:
k8m - 密码:
k8m - 请注意上线后修改用户名密码、启用两步验证。
- 用户名:
- 参数:
Usage of ./k8m:
--enable-temp-admin 是否启用临时管理员账户配置,默认关闭
--admin-password string 管理员密码,启用临时管理员账户配置后生效
--admin-username string 管理员用户名,启用临时管理员账户配置后生效
--print-config 是否打印配置信息 (default false)
--connect-cluster 启动集群是是否自动连接现有集群,默认关闭
-d, --debug 调试模式
--in-cluster 是否自动注册纳管宿主集群,默认启用
--jwt-token-secret string 登录后生成JWT token 使用的Secret (default "your-secret-key")
-c, --kubeconfig string kubeconfig文件路径 (default "/root/.kube/config")
--kubectl-shell-image string Kubectl Shell 镜像。默认为 bitnami/kubectl:latest,必须包含kubectl命令 (default "bitnami/kubectl:latest")
--log-v int klog的日志级别klog.V(2) (default 2)
--login-type string 登录方式,password, oauth, token等,default is password (default "password")
--image-pull-timeout Node Shell、Kubectl Shell 镜像拉取超时时间。默认为 30 秒
--node-shell-image string NodeShell 镜像。 默认为 alpine:latest,必须包含`nsenter`命令 (default "alpine:latest")
-p, --port int 监听端口 (default 3618)
-v, --v Level klog的日志级别 (default 2)
也可以直接通过docker-compose(推荐)启动:
services:
k8m:
container_name: k8m
image: registry.cn-hangzhou.aliyuncs.com/minik8m/k8m
restart: always
ports:
- "3618:3618"
environment:
TZ: Asia/Shanghai
volumes:
- ./data:/app/data
启动之后,访问3618端口,默认用户:k8m,默认密码k8m。
如果你想通过在线环境快速拉起体验,可以访问:k8m
ChatGPT 配置指南
内置GPT
从v0.0.8版本开始,将内置GPT,无需配置。 如果您需要使用自己的GPT,请参考以下文档。
- 自托管/自定义大模型支持 - 如何使用自托管的
- Ollama配置 - 如何配置使用Ollama大模型。
ChatGPT 状态调试
如果设置参数后,依然没有效果,请尝试使用./k8m -v 6获取更多的调试信息。
会输出以下信息,通过查看日志,确认是否启用ChatGPT。
ChatGPT 开启状态:true
ChatGPT 启用 key:sk-hl**********************************************, url:https: // api.siliconflow.cn/v1
ChatGPT 使用环境变量中设置的模型:Qwen/Qwen2.5-7B-Instruc
ChatGPT 账户
本项目集成了github.com/sashabaranov/go-openaiSDK。 国内访问推荐使用硅基流动的服务。 登录后,在https://cloud.siliconflow.cn/account/ak创建API_KEY
k8m 支持环境变量设置
k8m 支持通过环境变量和命令行参数灵活配置,主要参数如下:
| 环境变量 | 默认值 | 说明 |
|---|---|---|
PORT |
3618 |
监听的端口号 |
KUBECONFIG |
~/.kube/config |
kubeconfig 文件路径,会自动扫描识别同级目录下所有的配置文件 |
ANY_SELECT |
"true" |
是否开启任意选择划词解释,默认开启 (default true) |
LOGIN_TYPE |
"password" |
登录方式(如 password, oauth, token) |
ENABLE_TEMP_ADMIN |
"false" |
是否启用临时管理员账户配置,默认关闭。初次登录、忘记密码时使用 |
ADMIN_USERNAME |
管理员用户名,启用临时管理员账户配置后生效 | |
ADMIN_PASSWORD |
管理员密码,启用临时管理员账户配置后生效 | |
DEBUG |
"false" |
是否开启 debug 模式 |
LOG_V |
"2" |
log输出日志,同klog用法 |
JWT_TOKEN_SECRET |
"your-secret-key" |
用于 JWT Token 生成的密钥 |
KUBECTL_SHELL_IMAGE |
bitnami/kubectl:latest |
kubectl shell 镜像地址 |
NODE_SHELL_IMAGE |
alpine:latest |
Node shell 镜像地址 |
IMAGE_PULL_TIMEOUT |
30 |
Node shell、kubectl shell 镜像拉取超时时间(秒) |
CONNECT_CLUSTER |
"false" |
启动程序后,是否自动连接发现的集群,默认关闭 |
PRINT_CONFIG |
"false" |
是否打印配置信息 |
详细参数说明和更多配置方式请参考 docs/readme.md。
这些环境变量可以通过在运行应用程序时设置,例如:
export PORT=8080
export GIN_MODE="release"
./k8m
其他参数请参考 docs/readme.md。
容器化k8s集群方式运行
KinD方式
- 创建 KinD Kubernetes 集群
brew install kind
- 创建新的 Kubernetes 集群:
kind create cluster --name k8sgpt-demo
将k8m部署到集群中体验
安装脚本
kubectl apply -f https://raw.githubusercontent.com/weibaohui/k8m/refs/heads/main/deploy/k8m.yaml
- 访问: 默认使用了nodePort开放,请访问31999端口。或自行配置Ingress http://NodePortIP:31999
修改配置
首选建议通过修改环境变量方式进行修改。 例如增加deploy.yaml中的env参数
开发调试
如果你想在本地开发调试,请先执行一次本地前端构建,自动生成dist目录。因为本项目采用了二进制嵌入,没有dist前端会报错。
第一步编译前端
cd ui
pnpm run build
编译调试后端
#下载依赖
go mod tidy
#运行
air
#或者
go run main.go
# 监听localhost:3618端口
前端热加载
cd ui
pnpm run dev
#Vite服务会监听在localhost:3000端口
#Vite转发后端访问到3618端口
访问http://localhost:3000
HELP & SUPPORT
如果你有任何进一步的问题或需要额外的帮助,请随时与我联系!
特别鸣谢
zhaomingcheng01:提出了诸多非常高质量的建议,为k8m的易用好用做出了卓越贡献~
La0jin:提供在线资源及维护,极大提升了k8m的展示效果
eryajf:为我们提供了非常好用的github actions,为k8m增加了自动化的发版、构建、发布等功能
联系我
微信(大罗马的太阳) 搜索ID:daluomadetaiyang,备注k8m。
微信群
QQ群
Star History
Repository Owner
User
Repository Details
Programming Languages
Tags
Topics
Join Our Newsletter
Stay updated with the latest AI tools, news, and offers by subscribing to our weekly newsletter.
Related MCPs
Discover similar Model Context Protocol servers
mcp-k8s-eye
Kubernetes management and diagnostics tool with MCP protocol support.
mcp-k8s-eye enables users to manage and analyze Kubernetes clusters using standardized Model Context Protocol (MCP) interfaces. It offers comprehensive resource operations, diagnostics, and resource usage monitoring through both stdio and SSE transports. Supporting generic and custom resource management along with advanced diagnostic tooling, it is geared for integration with AI clients and other MCP consumers.
- ⭐ 26
- MCP
- wenhuwang/mcp-k8s-eye
Inspektor Gadget MCP Server
AI-powered Kubernetes troubleshooting via Model Context Protocol.
Inspektor Gadget MCP Server provides an AI-powered debugging and inspection interface for Kubernetes clusters. Leveraging the Model Context Protocol, it enables intelligent output summarization, one-click deployment of Inspektor Gadget, and automated discovery of debugging tools from Artifact Hub. The server integrates seamlessly with VS Code for interactive AI commands, simplifying Kubernetes troubleshooting and monitoring workflows.
- ⭐ 16
- MCP
- inspektor-gadget/ig-mcp-server
metoro-mcp-server
Bridge Kubernetes observability data to LLMs via the Model Context Protocol.
Metoro MCP Server is an implementation of the Model Context Protocol (MCP) that enables seamless integration between Kubernetes observability data and large language models. It connects Metoro’s eBPF-based telemetry APIs to LLM applications such as the Claude Desktop App, allowing AI systems to query and analyze Kubernetes clusters. This solution supports both authenticated and demo modes for accessing real-time cluster insights.
- ⭐ 45
- MCP
- metoro-io/metoro-mcp-server
Klavis
One MCP server for AI agents to handle thousands of tools.
Klavis provides an MCP (Model Context Protocol) server with over 100 prebuilt integrations for AI agents, enabling seamless connectivity with various tools and services. It offers both cloud-hosted and self-hosted deployment options and includes out-of-the-box OAuth support for secure authentication. Klavis is designed to act as an intelligent connector, streamlining workflow automation and enhancing agent capability through standardized context management.
- ⭐ 5,447
- MCP
- Klavis-AI/klavis
MCP CLI
A powerful CLI for seamless interaction with Model Context Protocol servers and advanced LLMs.
MCP CLI is a modular command-line interface designed for interacting with Model Context Protocol (MCP) servers and managing conversations with large language models. It integrates with the CHUK Tool Processor and CHUK-LLM to provide real-time chat, interactive command shells, and automation capabilities. The system supports a wide array of AI providers and models, advanced tool usage, context management, and performance metrics. Rich output formatting, concurrent tool execution, and flexible configuration make it suitable for both end-users and developers.
- ⭐ 1,755
- MCP
- chrishayuk/mcp-cli
MCP Router
A Unified MCP Server Management App
MCP Router is a cross-platform desktop application designed to simplify the management of Model Context Protocol (MCP) servers. It enables users to centrally manage, organize, and monitor multiple MCP servers, both locally and remotely, with support for various connection methods. The app offers advanced context organization through Projects and Workspaces, as well as tools toggling and comprehensive logging. With a focus on privacy, all data is stored locally, and integration capabilities allow seamless connection with popular AI tools.
- ⭐ 1,078
- MCP
- mcp-router/mcp-router
Didn't find tool you were looking for?