Vectorize MCP Server

Vectorize MCP Server

MCP server for advanced vector retrieval and text extraction with Vectorize integration.

97
Stars
21
Forks
97
Watchers
3
Issues
Vectorize MCP Server is an implementation of the Model Context Protocol (MCP) that integrates with the Vectorize platform to enable advanced vector retrieval and text extraction. It supports seamless installation and integration within development environments such as VS Code. The server is configurable through environment variables or JSON configuration files and is suitable for use in collaborative and individual workflows requiring vector-based context management for models.

Key Features

Implements Model Context Protocol (MCP)
Integrates with Vectorize for vector and pipeline operations
Supports advanced vector retrieval
Performs text extraction
Easy setup via npx or one-click install in VS Code
User-specific and workspace-wide configuration options
Environment variable support for dynamic setup
Custom JSON configuration for servers and inputs
Secure handling of credentials and tokens
Badge and status indications via external service

Use Cases

Automating context retrieval for AI models in development workflows
Integrating vector search and retrieval into AI-powered applications
Enabling collaborative configuration of model context in VS Code workspaces
Streamlining text extraction tasks from vectorized data sources
Rapid deployment of MCP servers for organization workflows
Enhancing document understanding and search experiences
Managing secure context access via tokens and pipeline IDs
Customizing and sharing context protocol configurations across teams
Supporting research projects requiring advanced vector-based knowledge extraction
Facilitating plugin or platform development interfacing with Vectorize contexts

README

Vectorize MCP Server

A Model Context Protocol (MCP) server implementation that integrates with Vectorize for advanced Vector retrieval and text extraction.

Installation

Running with npx

bash
export VECTORIZE_ORG_ID=YOUR_ORG_ID
export VECTORIZE_TOKEN=YOUR_TOKEN
export VECTORIZE_PIPELINE_ID=YOUR_PIPELINE_ID

npx -y @vectorize-io/vectorize-mcp-server@latest

VS Code Installation

For one-click installation, click one of the install buttons below:

Install with NPX in VS Code Install with NPX in VS Code Insiders

Manual Installation

For the quickest installation, use the one-click install buttons at the top of this section.

To install manually, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P and typing Preferences: Open User Settings (JSON).

json
{
  "mcp": {
    "inputs": [
      {
        "type": "promptString",
        "id": "org_id",
        "description": "Vectorize Organization ID"
      },
      {
        "type": "promptString",
        "id": "token",
        "description": "Vectorize Token",
        "password": true
      },
      {
        "type": "promptString",
        "id": "pipeline_id",
        "description": "Vectorize Pipeline ID"
      }
    ],
    "servers": {
      "vectorize": {
        "command": "npx",
        "args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
        "env": {
          "VECTORIZE_ORG_ID": "${input:org_id}",
          "VECTORIZE_TOKEN": "${input:token}",
          "VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
        }
      }
    }
  }
}

Optionally, you can add the following to a file called .vscode/mcp.json in your workspace to share the configuration with others:

json
{
  "inputs": [
    {
      "type": "promptString",
      "id": "org_id",
      "description": "Vectorize Organization ID"
    },
    {
      "type": "promptString",
      "id": "token",
      "description": "Vectorize Token",
      "password": true
    },
    {
      "type": "promptString",
      "id": "pipeline_id",
      "description": "Vectorize Pipeline ID"
    }
  ],
  "servers": {
    "vectorize": {
      "command": "npx",
      "args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
      "env": {
        "VECTORIZE_ORG_ID": "${input:org_id}",
        "VECTORIZE_TOKEN": "${input:token}",
        "VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
      }
    }
  }
}

Configuration on Claude/Windsurf/Cursor/Cline

json
{
  "mcpServers": {
    "vectorize": {
      "command": "npx",
      "args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
      "env": {
        "VECTORIZE_ORG_ID": "your-org-id",
        "VECTORIZE_TOKEN": "your-token",
        "VECTORIZE_PIPELINE_ID": "your-pipeline-id"
      }
    }
  }
}

Tools

Retrieve documents

Perform vector search and retrieve documents (see official API):

json
{
  "name": "retrieve",
  "arguments": {
    "question": "Financial health of the company",
    "k": 5
  }
}

Text extraction and chunking (Any file to Markdown)

Extract text from a document and chunk it into Markdown format (see official API):

json
{
  "name": "extract",
  "arguments": {
    "base64document": "base64-encoded-document",
    "contentType": "application/pdf"
  }
}

Deep Research

Generate a Private Deep Research from your pipeline (see official API):

json
{
  "name": "deep-research",
  "arguments": {
    "query": "Generate a financial status report about the company",
    "webSearch": true
  }
}

Development

bash
npm install
npm run dev

Release

Change the package.json version and then:

bash
git commit -am "x.y.z"
git tag x.y.z
git push origin
git push origin --tags

Contributing

  1. Fork the repository
  2. Create your feature branch
  3. Submit a pull request

Star History

Star History Chart

Repository Owner

vectorize-io
vectorize-io

Organization

Repository Details

Language JavaScript
Default Branch main
Size 33 KB
Contributors 6
License MIT License
MCP Verified Nov 12, 2025

Programming Languages

JavaScript
100%

Tags

Topics

mcp mcp-server

Join Our Newsletter

Stay updated with the latest AI tools, news, and offers by subscribing to our weekly newsletter.

We respect your privacy. Unsubscribe at any time.

Related MCPs

Discover similar Model Context Protocol servers

  • MyMCP Server (All-in-One Model Context Protocol)

    MyMCP Server (All-in-One Model Context Protocol)

    Powerful and extensible Model Context Protocol server with developer and productivity integrations.

    MyMCP Server is a robust Model Context Protocol (MCP) server implementation that integrates with services like GitLab, Jira, Confluence, YouTube, Google Workspace, and more. It provides AI-powered search, contextual tool execution, and workflow automation for development and productivity tasks. The system supports extensive configuration and enables selective activation of grouped toolsets for various environments. Installation and deployment are streamlined, with both automated and manual setup options available.

    • 93
    • MCP
    • nguyenvanduocit/all-in-one-model-context-protocol
  • Kanboard MCP Server

    Kanboard MCP Server

    MCP server for seamless AI integration with Kanboard project management.

    Kanboard MCP Server is a Go-based server implementing the Model Context Protocol (MCP) for integrating AI assistants with the Kanboard project management system. It enables users to manage projects, tasks, users, and workflows in Kanboard directly via natural language commands through compatible AI tools. With built-in support for secure authentication and high performance, it facilitates streamlined project operations between Kanboard and AI-powered clients like Cursor or Claude Desktop. The server is configurable and designed for compatibility with MCP standards.

    • 15
    • MCP
    • bivex/kanboard-mcp
  • Semgrep MCP Server

    Semgrep MCP Server

    A Model Context Protocol server powered by Semgrep for seamless code analysis integration.

    Semgrep MCP Server implements the Model Context Protocol (MCP) to enable efficient and standardized communication for code analysis tasks. It facilitates integration with platforms like LM Studio, Cursor, and Visual Studio Code, providing both Docker and Python (PyPI) deployment options. The tool is now maintained in the main Semgrep repository with continued updates, enhancing compatibility and support across developer tools.

    • 611
    • MCP
    • semgrep/mcp
  • GitHub MCP Server

    GitHub MCP Server

    Connect AI tools directly to GitHub for repository, issue, and workflow management via natural language.

    GitHub MCP Server enables AI tools such as agents, assistants, and chatbots to interact natively with the GitHub platform. It allows these tools to access repositories, analyze code, manage issues and pull requests, and automate workflows using the Model Context Protocol (MCP). The server supports integration with multiple hosts, including VS Code and other popular IDEs, and can operate both remotely and locally. Built for developers seeking to enhance AI-powered development workflows through seamless GitHub context access.

    • 24,418
    • MCP
    • github/github-mcp-server
  • CipherTrust Manager MCP Server

    CipherTrust Manager MCP Server

    Enables AI assistants to access CipherTrust Manager securely via the Model Context Protocol.

    CipherTrust Manager MCP Server provides an implementation of the Model Context Protocol (MCP), offering AI assistants such as Claude and Cursor a unified interface to interact with CipherTrust Manager resources. Communication is facilitated through JSON-RPC over stdin/stdout, enabling key management, CTE client management, user management, and connection management functionalities. The tool is configurable via environment variables and integrates with existing CipherTrust Manager instances using the ksctl CLI for secure resource access.

    • 7
    • MCP
    • sanyambassi/ciphertrust-manager-mcp-server
  • Yuque-MCP-Server

    Yuque-MCP-Server

    Seamless integration of Yuque knowledge base with Model-Context-Protocol for AI model context management.

    Yuque-MCP-Server provides an MCP-compatible server for interacting with the Yuque knowledge base platform. It enables AI models to retrieve, manage, and analyze Yuque documents and user information through a standardized Model-Context-Protocol interface. The server supports operations such as document creation, reading, updating, deletion, advanced search, and team statistics retrieval, making it ideal for AI-powered workflows. Inspired by Figma-Context-MCP, it facilitates contextual awareness and dynamic knowledge management for AI applications.

    • 31
    • MCP
    • HenryHaoson/Yuque-MCP-Server
  • Didn't find tool you were looking for?

    Be as detailed as possible for better results