mcp-pinecone
A Pinecone-backed Model Context Protocol server for semantic search and document management.
Key Features
Use Cases
README
Pinecone Model Context Protocol Server for Claude Desktop.
Read and write to a Pinecone index.
Components
flowchart TB
subgraph Client["MCP Client (e.g., Claude Desktop)"]
UI[User Interface]
end
subgraph MCPServer["MCP Server (pinecone-mcp)"]
Server[Server Class]
subgraph Handlers["Request Handlers"]
ListRes[list_resources]
ReadRes[read_resource]
ListTools[list_tools]
CallTool[call_tool]
GetPrompt[get_prompt]
ListPrompts[list_prompts]
end
subgraph Tools["Implemented Tools"]
SemSearch[semantic-search]
ReadDoc[read-document]
ListDocs[list-documents]
PineconeStats[pinecone-stats]
ProcessDoc[process-document]
end
end
subgraph PineconeService["Pinecone Service"]
PC[Pinecone Client]
subgraph PineconeFunctions["Pinecone Operations"]
Search[search_records]
Upsert[upsert_records]
Fetch[fetch_records]
List[list_records]
Embed[generate_embeddings]
end
Index[(Pinecone Index)]
end
%% Connections
UI --> Server
Server --> Handlers
ListTools --> Tools
CallTool --> Tools
Tools --> PC
PC --> PineconeFunctions
PineconeFunctions --> Index
%% Data flow for semantic search
SemSearch --> Search
Search --> Embed
Embed --> Index
%% Data flow for document operations
UpsertDoc --> Upsert
ReadDoc --> Fetch
ListRes --> List
classDef primary fill:#2563eb,stroke:#1d4ed8,color:white
classDef secondary fill:#4b5563,stroke:#374151,color:white
classDef storage fill:#059669,stroke:#047857,color:white
class Server,PC primary
class Tools,Handlers secondary
class Index storage
Resources
The server implements the ability to read and write to a Pinecone index.
Tools
semantic-search: Search for records in the Pinecone index.read-document: Read a document from the Pinecone index.list-documents: List all documents in the Pinecone index.pinecone-stats: Get stats about the Pinecone index, including the number of records, dimensions, and namespaces.process-document: Process a document into chunks and upsert them into the Pinecone index. This performs the overall steps of chunking, embedding, and upserting.
Note: embeddings are generated via Pinecone's inference API and chunking is done with a token-based chunker. Written by copying a lot from langchain and debugging with Claude.
Quickstart
Installing via Smithery
To install Pinecone MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install mcp-pinecone --client claude
Install the server
Recommend using uv to install the server locally for Claude.
uvx install mcp-pinecone
OR
uv pip install mcp-pinecone
Add your config as described below.
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
Note: You might need to use the direct path to uv. Use which uv to find the path.
Development/Unpublished Servers Configuration
"mcpServers": {
"mcp-pinecone": {
"command": "uv",
"args": [
"--directory",
"{project_dir}",
"run",
"mcp-pinecone"
]
}
}
Published Servers Configuration
"mcpServers": {
"mcp-pinecone": {
"command": "uvx",
"args": [
"--index-name",
"{your-index-name}",
"--api-key",
"{your-secret-api-key}",
"mcp-pinecone"
]
}
}
Sign up to Pinecone
You can sign up for a Pinecone account here.
Get an API key
Create a new index in Pinecone, replacing {your-index-name} and get an API key from the Pinecone dashboard, replacing {your-secret-api-key} in the config.
Development
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
uv sync
- Build package distributions:
uv build
This will create source and wheel distributions in the dist/ directory.
- Publish to PyPI:
uv publish
Note: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--tokenorUV_PUBLISH_TOKEN - Or username/password:
--username/UV_PUBLISH_USERNAMEand--password/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm with this command:
npx @modelcontextprotocol/inspector uv --directory {project_dir} run mcp-pinecone
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
License
This project is licensed under the MIT License. See the LICENSE file for details.
Source Code
The source code is available on GitHub.
Contributing
Send your ideas and feedback to me on Bluesky or by opening an issue.
Star History
Repository Owner
User
Repository Details
Programming Languages
Tags
Topics
Join Our Newsletter
Stay updated with the latest AI tools, news, and offers by subscribing to our weekly newsletter.
Related MCPs
Discover similar Model Context Protocol servers
Pinecone Assistant MCP Server
An MCP server for retrieving information from Pinecone Assistant.
Pinecone Assistant MCP Server is an implementation of the Model Context Protocol (MCP) for seamless integration with Pinecone Assistant. It enables retrieval of information and supports configurable multiple result fetching. The server can be run via Docker or built from source with Rust and integrates with tools like Claude Desktop.
- ⭐ 37
- MCP
- pinecone-io/assistant-mcp
MCP Local RAG
Privacy-first local semantic document search server for MCP clients.
MCP Local RAG is a privacy-preserving, local document search server designed for use with Model Context Protocol (MCP) clients such as Cursor, Codex, and Claude Code. It enables users to ingest and semantically search local documents without using external APIs or cloud services. All processing, including embedding generation and vector storage, is performed on the user's machine. The tool supports document ingestion, semantic search, file management, file deletion, and system status reporting through MCP.
- ⭐ 10
- MCP
- shinpr/mcp-local-rag
MCP Server for Milvus
Bridge Milvus vector database with AI apps using Model Context Protocol (MCP).
MCP Server for Milvus enables seamless integration between the Milvus vector database and large language model (LLM) applications via the Model Context Protocol. It exposes Milvus functionality to external LLM-powered tools through both stdio and Server-Sent Events communication modes. The solution is compatible with MCP-enabled clients such as Claude Desktop and Cursor, supporting easy access to relevant vector data for enhanced AI workflows. Configuration is flexible through environment variables or command-line arguments.
- ⭐ 196
- MCP
- zilliztech/mcp-server-milvus
LlamaCloud MCP Server
Connect multiple LlamaCloud indexes as tools for your MCP client.
LlamaCloud MCP Server is a TypeScript-based implementation of a Model Context Protocol server that allows users to connect multiple managed indexes from LlamaCloud as separate tools in MCP-compatible clients. Each tool is defined via command-line parameters, enabling flexible and dynamic access to different document indexes. The server automatically generates tool interfaces, each capable of querying its respective LlamaCloud index, with customizable parameters such as index name, description, and result limits. Designed for seamless integration, it works with clients like Claude Desktop, Windsurf, and Cursor.
- ⭐ 82
- MCP
- run-llama/mcp-server-llamacloud
Weaviate MCP Server
A server implementation for the Model Context Protocol (MCP) built on Weaviate.
Weaviate MCP Server provides a backend implementation of the Model Context Protocol, enabling interaction with Weaviate for managing, inserting, and querying context objects. The server facilitates object insertion and hybrid search retrieval, supporting context-driven workflows required for LLM orchestration and memory management. It includes tools for building and running a client application, showcasing integration with Weaviate's vector database.
- ⭐ 157
- MCP
- weaviate/mcp-server-weaviate
tavily-search MCP server
A search server that integrates Tavily API with Model Context Protocol tools.
tavily-search MCP server provides an MCP-compliant server to perform search queries using the Tavily API. It returns search results in text format, including AI responses, URLs, and result titles. The server is designed for easy integration with clients like Claude Desktop or Cursor and supports both local and Docker-based deployment. It facilitates AI workflows by offering search functionality as part of a standardized protocol interface.
- ⭐ 44
- MCP
- Tomatio13/mcp-server-tavily
Didn't find tool you were looking for?