Weather MCP Server
A Model Context Protocol server delivering weather and air quality data via multiple transport modes.
Key Features
Use Cases
README
Weather MCP Server
A Model Context Protocol (MCP) server that provides weather information using the Open-Meteo API. This server supports multiple transport modes: standard stdio, HTTP Server-Sent Events (SSE), and the new Streamable HTTP protocol for web-based integration.
Features
Weather & Air Quality
- Get current weather information with comprehensive metrics:
- Temperature, humidity, dew point
- Wind speed, direction, and gusts
- Precipitation (rain/snow) and probability
- Atmospheric pressure and cloud cover
- UV index and visibility
- "Feels like" temperature
- Get weather data for a date range with hourly details
- Get air quality information including:
- PM2.5 and PM10 particulate matter
- Ozone, nitrogen dioxide, carbon monoxide
- Sulfur dioxide, ammonia, dust
- Aerosol optical depth
- Health advisories and recommendations
Time & Timezone
- Get current date/time in any timezone
- Convert time between timezones
- Get timezone information
Transport Modes
- Multiple transport modes:
- stdio - Standard MCP for desktop clients (Claude Desktop, etc.)
- SSE - Server-Sent Events for web applications
- streamable-http - Modern MCP Streamable HTTP protocol with stateful/stateless options
- RESTful API endpoints via Starlette integration
Installation
Installing via Smithery
To install Weather MCP Server automatically via Smithery:
npx -y @smithery/cli install @isdaniel/mcp_weather_server
Standard Installation (for MCP clients like Claude Desktop)
This package can be installed using pip:
pip install mcp_weather_server
Manual Configuration for MCP Clients
This server is designed to be installed manually by adding its configuration to the cline_mcp_settings.json file.
- Add the following entry to the
mcpServersobject in yourcline_mcp_settings.jsonfile:
{
"mcpServers": {
"weather": {
"command": "python",
"args": [
"-m",
"mcp_weather_server"
],
"disabled": false,
"autoApprove": []
}
}
}
- Save the
cline_mcp_settings.jsonfile.
HTTP Server Installation (for web applications)
For HTTP SSE or Streamable HTTP support, you'll need additional dependencies:
pip install mcp_weather_server starlette uvicorn
Server Modes
This MCP server supports stdio, SSE, and streamable-http modes in a single unified server:
Mode Comparison
| Feature | stdio | SSE | streamable-http |
|---|---|---|---|
| Use Case | Desktop MCP clients | Web applications (legacy) | Web applications (modern) |
| Protocol | Standard I/O streams | Server-Sent Events | MCP Streamable HTTP |
| Session Management | N/A | Stateful | Stateful or Stateless |
| Endpoints | N/A | /sse, /messages/ |
/mcp (single) |
| Best For | Claude Desktop, Cline | Browser-based apps | Modern web apps, APIs |
| State Options | N/A | Stateful only | Stateful or Stateless |
1. Standard MCP Mode (Default)
The standard mode communicates via stdio and is compatible with MCP clients like Claude Desktop.
# Default mode (stdio)
python -m mcp_weather_server
# Explicitly specify stdio mode
python -m mcp_weather_server.server --mode stdio
2. HTTP SSE Mode (Web Applications)
The SSE mode runs an HTTP server that provides MCP functionality via Server-Sent Events, making it accessible to web applications.
# Start SSE server on default host/port (0.0.0.0:8080)
python -m mcp_weather_server --mode sse
# Specify custom host and port
python -m mcp_weather_server --mode sse --host localhost --port 3000
# Enable debug mode
python -m mcp_weather_server --mode sse --debug
SSE Endpoints:
GET /sse- SSE endpoint for MCP communicationPOST /messages/- Message endpoint for sending MCP requests
3. Streamable HTTP Mode (Modern MCP Protocol)
The streamable-http mode implements the new MCP Streamable HTTP protocol with a single /mcp endpoint. This mode supports both stateful (default) and stateless operations.
# Start streamable HTTP server on default host/port (0.0.0.0:8080)
python -m mcp_weather_server --mode streamable-http
# Specify custom host and port
python -m mcp_weather_server --mode streamable-http --host localhost --port 3000
# Enable stateless mode (creates fresh transport per request, no session tracking)
python -m mcp_weather_server --mode streamable-http --stateless
# Enable debug mode
python -m mcp_weather_server --mode streamable-http --debug
Streamable HTTP Features:
- Stateful mode (default): Maintains session state across requests using session IDs
- Stateless mode: Creates fresh transport per request with no session tracking
- Single endpoint: All MCP communication happens through
/mcp - Modern protocol: Implements the latest MCP Streamable HTTP specification
Streamable HTTP Endpoint:
POST /mcp- Single endpoint for all MCP communication (initialize, tools/list, tools/call, etc.)
Command Line Options:
--mode {stdio,sse,streamable-http} Server mode: stdio (default), sse, or streamable-http
--host HOST Host to bind to (HTTP modes only, default: 0.0.0.0)
--port PORT Port to listen on (HTTP modes only, default: 8080)
--stateless Run in stateless mode (streamable-http only)
--debug Enable debug mode
Example SSE Usage:
// Connect to SSE endpoint
const eventSource = new EventSource('http://localhost:8080/sse');
// Send MCP tool request
fetch('http://localhost:8080/messages/', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
type: 'tool_call',
tool: 'get_weather',
arguments: { city: 'Tokyo' }
})
});
Example Streamable HTTP Usage:
// Initialize session and call tool using Streamable HTTP protocol
async function callWeatherTool() {
const response = await fetch('http://localhost:8080/mcp', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
jsonrpc: '2.0',
method: 'tools/call',
params: {
name: 'get_current_weather',
arguments: { city: 'Tokyo' }
},
id: 1
})
});
const result = await response.json();
console.log(result);
}
Configuration
This server does not require an API key. It uses the Open-Meteo API, which is free and open-source.
Usage
This server provides several tools for weather and time-related operations:
Available Tools
Weather Tools
get_current_weather- Get current weather for a city with comprehensive metricsget_weather_by_datetime_range- Get weather data for a date range with hourly detailsget_weather_details- Get detailed weather information as structured JSON data
Air Quality Tools
get_air_quality- Get air quality information with pollutant levels and health adviceget_air_quality_details- Get detailed air quality data as structured JSON
Time & Timezone Tools
get_current_datetime- Get current time in any timezoneget_timezone_info- Get timezone informationconvert_time- Convert time between timezones
Tool Details
get_current_weather
Retrieves comprehensive current weather information for a given city with enhanced metrics.
Parameters:
city(string, required): The name of the city (English names only)
Returns: Detailed weather data including:
- Temperature and "feels like" temperature
- Humidity, dew point
- Wind speed, direction (as compass direction), and gusts
- Precipitation details (rain/snow) and probability
- Atmospheric pressure and cloud cover
- UV index with warning levels
- Visibility
Example Response:
The weather in Tokyo is Mainly clear with a temperature of 22.5°C (feels like 21.0°C),
relative humidity at 65%, and dew point at 15.5°C. Wind is blowing from the NE at 12.5 km/h
with gusts up to 18.5 km/h. Atmospheric pressure is 1013.2 hPa with 25% cloud cover.
UV index is 5.5 (Moderate). Visibility is 10.0 km.
get_weather_by_datetime_range
Retrieves hourly weather information with comprehensive metrics for a specified city between start and end dates.
Parameters:
city(string, required): The name of the city (English names only)start_date(string, required): Start date in format YYYY-MM-DD (ISO 8601)end_date(string, required): End date in format YYYY-MM-DD (ISO 8601)
Returns: Comprehensive weather analysis including:
- Hourly weather data with all enhanced metrics
- Temperature trends (highs, lows, averages)
- Precipitation patterns and probabilities
- Wind conditions assessment
- UV index trends
- Weather warnings and recommendations
Example Response:
[Analysis of weather trends over 2024-01-01 to 2024-01-07]
- Temperature ranges from 5°C to 15°C
- Precipitation expected on Jan 3rd and 5th (60% probability)
- Wind speeds averaging 15 km/h from SW direction
- UV index moderate (3-5) throughout the period
- Recommendation: Umbrella needed for midweek
get_weather_details
Get detailed weather information for a specified city as structured JSON data for programmatic use.
Parameters:
city(string, required): The name of the city (English names only)
Returns: Raw JSON data with all weather metrics suitable for processing and analysis
get_air_quality
Get current air quality information for a specified city with pollutant levels and health advisories.
Parameters:
city(string, required): The name of the city (English names only)variables(array, optional): Specific pollutants to retrieve. Options:pm10- Particulate matter ≤10μmpm2_5- Particulate matter ≤2.5μmcarbon_monoxide- CO levelsnitrogen_dioxide- NO2 levelsozone- O3 levelssulphur_dioxide- SO2 levelsammonia- NH3 levelsdust- Dust particle levelsaerosol_optical_depth- Atmospheric turbidity
Returns: Comprehensive air quality report including:
- Current pollutant levels with units
- Air quality classification (Good/Moderate/Unhealthy/Hazardous)
- Health recommendations for general population
- Specific warnings for sensitive groups
- Comparison with WHO and EPA standards
Example Response:
Air quality in Beijing (lat: 39.90, lon: 116.41):
PM2.5: 45.3 μg/m³ (Unhealthy for Sensitive Groups)
PM10: 89.2 μg/m³ (Moderate)
Ozone (O3): 52.1 μg/m³
Nitrogen Dioxide (NO2): 38.5 μg/m³
Carbon Monoxide (CO): 420.0 μg/m³
Health Advice: Sensitive groups (children, elderly, people with respiratory conditions)
should limit outdoor activities.
get_air_quality_details
Get detailed air quality information as structured JSON data for programmatic analysis.
Parameters:
city(string, required): The name of the city (English names only)variables(array, optional): Specific pollutants to retrieve (same options asget_air_quality)
Returns: Raw JSON data with complete air quality metrics and hourly data
get_current_datetime
Retrieves the current time in a specified timezone.
Parameters:
timezone_name(string, required): IANA timezone name (e.g., 'America/New_York', 'Europe/London'). Use UTC if no timezone provided.
Returns: Current date and time in the specified timezone
Example:
{
"timezone": "America/New_York",
"current_time": "2024-01-15T14:30:00-05:00",
"utc_time": "2024-01-15T19:30:00Z"
}
get_timezone_info
Get information about a specific timezone.
Parameters:
timezone_name(string, required): IANA timezone name
Returns: Timezone details including offset and DST information
convert_time
Convert time from one timezone to another.
Parameters:
time_str(string, required): Time to convert (ISO format)from_timezone(string, required): Source timezoneto_timezone(string, required): Target timezone
Returns: Converted time in target timezone
MCP Client Usage Examples
Using with Claude Desktop or MCP Clients
<use_mcp_tool>
<server_name>weather</server_name>
<tool_name>get_current_weather</tool_name>
<arguments>
{
"city": "Tokyo"
}
</arguments>
</use_mcp_tool>
<use_mcp_tool>
<server_name>weather</server_name>
<tool_name>get_weather_by_datetime_range</tool_name>
<arguments>
{
"city": "Paris",
"start_date": "2024-01-01",
"end_date": "2024-01-07"
}
</arguments>
</use_mcp_tool>
<use_mcp_tool>
<server_name>weather</server_name>
<tool_name>get_current_datetime</tool_name>
<arguments>
{
"timezone_name": "Europe/Paris"
}
</arguments>
</use_mcp_tool>
<use_mcp_tool>
<server_name>weather</server_name>
<tool_name>get_air_quality</tool_name>
<arguments>
{
"city": "Beijing"
}
</arguments>
</use_mcp_tool>
<use_mcp_tool>
<server_name>weather</server_name>
<tool_name>get_air_quality</tool_name>
<arguments>
{
"city": "Los Angeles",
"variables": ["pm2_5", "pm10", "ozone"]
}
</arguments>
</use_mcp_tool>
Web Integration (SSE Mode)
When running in SSE mode, you can integrate the weather server with web applications:
HTML/JavaScript Example
<!DOCTYPE html>
<html>
<head>
<title>Weather MCP Client</title>
</head>
<body>
<div id="weather-data"></div>
<script>
// Connect to SSE endpoint
const eventSource = new EventSource('http://localhost:8080/sse');
eventSource.onmessage = function(event) {
const data = JSON.parse(event.data);
document.getElementById('weather-data').innerHTML = JSON.stringify(data, null, 2);
};
// Function to get weather
async function getWeather(city) {
const response = await fetch('http://localhost:8080/messages/', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
jsonrpc: '2.0',
method: 'tools/call',
params: {
name: 'get_current_weather',
arguments: { city: city }
},
id: 1
})
});
}
// Example: Get weather for Tokyo
getWeather('Tokyo');
// Example: Get air quality
async function getAirQuality(city) {
const response = await fetch('http://localhost:8080/messages/', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
jsonrpc: '2.0',
method: 'tools/call',
params: {
name: 'get_air_quality',
arguments: { city: city }
},
id: 2
})
});
}
getAirQuality('Beijing');
</script>
</body>
</html>
Docker Deployment
The project is available as a Docker image on Docker Hub and includes configurations for easy deployment.
Quick Start with Docker Hub
Pull and run the latest image directly from Docker Hub:
# Pull the latest image
docker pull dog830228/mcp_weather_server:latest
# Run in stdio mode (default)
docker run dog830228/mcp_weather_server:latest
# Run in SSE mode on port 8080
docker run -p 8080:8080 dog830228/mcp_weather_server:latest --mode sse
# Run in streamable-http mode on port 8080
docker run -p 8080:8080 dog830228/mcp_weather_server:latest --mode streamable-http
# Pull a specific version
docker pull dog830228/mcp_weather_server:0.5.0
docker run -p 8080:8080 dog830228/mcp_weather_server:0.5.0 --mode sse
Available Docker Images
- Latest:
dog830228/mcp_weather_server:latest - Versioned:
dog830228/mcp_weather_server:<version>(e.g.,0.5.0)
Images are automatically built and published when new versions are released.
Building from Source
If you want to build the Docker image yourself:
Standard Build
# Build
docker build -t mcp-weather-server:sse .
# Run (port will be read from PORT env var, defaults to 8081)
docker run -p 8081:8081 mcp-weather-server:sse
# Run with custom port
docker run -p 8080:8080 mcp-weather-server:local --mode sse
Streamable HTTP Build
# Build using streamable-http Dockerfile
docker build -f Dockerfile.streamable-http -t mcp-weather-server:streamable-http .
# Run in stateful mode
docker run -p 8080:8080 mcp-weather-server:streamable-http
# Run in stateless mode
docker run -p 8080:8080 -e STATELESS=true mcp-weather-server:streamable-http
Development
Project Structure
mcp_weather_server/
├── src/
│ └── mcp_weather_server/
│ ├── __init__.py
│ ├── __main__.py # Main MCP server entry point
│ ├── server.py # Unified server (stdio, SSE, streamable-http)
│ ├── utils.py # Utility functions
│ └── tools/ # Tool implementations
│ ├── __init__.py
│ ├── toolhandler.py # Base tool handler
│ ├── tools_weather.py # Weather-related tools
│ ├── tools_time.py # Time-related tools
│ ├── tools_air_quality.py # Air quality tools
│ ├── weather_service.py # Weather API service
│ └── air_quality_service.py # Air quality API service
├── tests/
├── Dockerfile # Docker configuration for SSE mode
├── Dockerfile.streamable-http # Docker configuration for streamable-http mode
├── pyproject.toml
├── requirements.txt
└── README.md
Running for Development
Standard MCP Mode (stdio)
# From project root
python -m mcp_weather_server
# Or with PYTHONPATH
export PYTHONPATH="/path/to/mcp_weather_server/src"
python -m mcp_weather_server
SSE Server Mode
# From project root
python -m mcp_weather_server --mode sse --host 0.0.0.0 --port 8080
# With custom host/port
python -m mcp_weather_server --mode sse --host localhost --port 3000
Streamable HTTP Mode
# Stateful mode (default)
python -m mcp_weather_server --mode streamable-http --host 0.0.0.0 --port 8080
# With debug logging
python -m mcp_weather_server --mode streamable-http --debug
Adding New Tools
To add new weather or time-related tools:
- Create a new tool handler in the appropriate file under
tools/ - Inherit from the
ToolHandlerbase class - Implement the required methods (
get_name,get_description,call) - Register the tool in
server.py
Dependencies
Core Dependencies
mcp>=1.0.0- Model Context Protocol implementationhttpx>=0.28.1- HTTP client for API requestspython-dateutil>=2.8.2- Date/time parsing utilities
SSE Server Dependencies
starlette- ASGI web frameworkuvicorn- ASGI server
Development Dependencies
pytest- Testing framework
API Data Sources
This server uses free and open-source APIs:
Weather Data: Open-Meteo Weather API
- Free and open-source
- No API key required
- Provides accurate weather forecasts
- Supports global locations
- Historical and current weather data
- Comprehensive metrics (wind, precipitation, UV, visibility)
Air Quality Data:
- Free and open-source
- No API key required
- Real-time air quality data
- Multiple pollutant measurements (PM2.5, PM10, O3, NO2, CO, SO2)
- Global coverage
- Health-based air quality indices
Troubleshooting
Common Issues
1. City not found
- Ensure city names are in English
- Try using the full city name or include country (e.g., "Paris, France")
- Check spelling of city names
2. HTTP Server not accessible (SSE or Streamable HTTP)
- Verify the server is running with the correct mode:
- SSE:
python -m mcp_weather_server --mode sse - Streamable HTTP:
python -m mcp_weather_server --mode streamable-http
- SSE:
- Check firewall settings for the specified port
- Ensure all dependencies are installed:
pip install starlette uvicorn - Verify the correct endpoint:
- SSE:
http://localhost:8080/sseandhttp://localhost:8080/messages/ - Streamable HTTP:
http://localhost:8080/mcp
- SSE:
3. MCP Client connection issues
- Verify Python path in MCP client configuration
- Check that
mcp_weather_serverpackage is installed - Ensure Python environment has required dependencies
4. Date format errors
- Use ISO 8601 format for dates: YYYY-MM-DD
- Ensure start_date is before end_date
- Check that dates are not too far in the future
Error Responses
The server returns structured error messages:
{
"error": "Could not retrieve coordinates for InvalidCity."
}
Star History
Repository Owner
User
Repository Details
Programming Languages
Tags
Join Our Newsletter
Stay updated with the latest AI tools, news, and offers by subscribing to our weekly newsletter.
Related MCPs
Discover similar Model Context Protocol servers
MCP Weather Server
Provides weather forecasts to LLMs via the Model Context Protocol.
MCP Weather Server enables large language models to access real-time, accurate weather forecasts by interfacing with the AccuWeather API. It offers both hourly and daily weather data, supporting metric and imperial units, and can be seamlessly integrated with MCP-compatible clients like Claude Desktop or supergateway. The server provides tools for retrieving weather based on location and settings, with robust configuration options. It is designed for straightforward deployment using Node.js and environment-configured API keys.
- ⭐ 27
- MCP
- TimLukaHorstmann/mcp-weather
Aviationstack MCP Server
MCP server offering comprehensive endpoints for aviation and flight data.
Aviationstack MCP Server provides an MCP-compliant API that exposes tools to access real-time and scheduled flight data, aircraft details, random aircraft types, countries, and city information from the AviationStack API. It offers ready-to-use endpoints for airline-specific flight queries, airport schedules, and in-depth vehicle, country, and city data. The solution applies the Model Context Protocol by defining MCP tools as Python functions with standardized interfaces, designed for seamless integration into MCP-compatible environments. The server is built using Python, incorporates the FastMCP library, and is intended for easy deployment and use in application development.
- ⭐ 11
- MCP
- Pradumnasaraf/aviationstack-mcp
mcp-time
A Model Context Protocol server for time and date operations
mcp-time is a Model Context Protocol (MCP) server that enables AI assistants and MCP clients to perform standardized time and date-related operations. It provides natural language parsing for relative time expressions, supports flexible formatting, and allows manipulation and comparison of times. The server offers multiple integration methods, including stdio, HTTP stream, Docker, and npx for compatibility with various clients. It is designed for robust time handling and easy integration with AI tools.
- ⭐ 8
- MCP
- TheoBrigitte/mcp-time
ws-mcp
WebSocket bridge for MCP stdio servers.
ws-mcp wraps Model Context Protocol (MCP) stdio servers with a WebSocket interface, enabling seamless integration with web-based clients and tools. It allows users to configure and launch multiple MCP servers via a flexible configuration file or command-line arguments. The tool is designed to be compatible with services such as wcgw, fetch, and other MCP-compliant servers, providing standardized access to system operations, HTTP requests, and more. Integration with tools like Kibitz enables broader applications in model interaction workflows.
- ⭐ 19
- MCP
- nick1udwig/ws-mcp
Dappier MCP Server
Real-time web search and premium data access for AI agents via Model Context Protocol.
Dappier MCP Server enables fast, real-time web search and access to premium data sources, including news, financial markets, sports, and weather, for AI agents using the Model Context Protocol (MCP). It integrates seamlessly with tools like Claude Desktop and Cursor, allowing users to enhance their AI workflows with up-to-date, trusted information. Simple installation and configuration are provided for multiple platforms, leveraging API keys for secure access. The solution supports deployment via Smithery and direct installation with 'uv', facilitating rapid setup for developers.
- ⭐ 35
- MCP
- DappierAI/dappier-mcp
Climatiq MCP Server
MCP server providing AI assistants with real-time carbon emissions calculations via Climatiq API.
Climatiq MCP Server implements the Model Context Protocol to bridge AI assistants with the Climatiq API for precise carbon emissions calculations. It exposes a set of tools for various emissions scenarios, including electricity use, travel, freight, and more. The server generates resource URIs for detailed emission reports and provides natural language explanations on climate impact. Configuration is streamlined via environment variables, CLI tools, or files, supporting easy integration with platforms like Claude Desktop.
- ⭐ 6
- MCP
- jagan-shanmugam/climatiq-mcp-server
Didn't find tool you were looking for?