Snowflake MCP Server
MCP server enabling secure and structured Snowflake database interaction with AI tools.
Key Features
Use Cases
README
Snowflake MCP Server
Overview
A Model Context Protocol (MCP) server implementation that provides database interaction with Snowflake. This server enables running SQL queries via tools and exposes data insights and schema context as resources.
Components
Resources
-
memo://insights
A continuously updated memo aggregating discovered data insights.
Updated automatically when new insights are appended via theappend_insighttool. -
context://table/{table_name}
(If prefetch enabled) Per-table schema summaries, including columns and comments, exposed as individual resources.
Tools
The server exposes the following tools:
Query Tools
-
read_query
ExecuteSELECTqueries to read data from the database.
Input:query(string): TheSELECTSQL query to execute
Returns: Query results as array of objects
-
write_query(enabled only with--allow-write)
ExecuteINSERT,UPDATE, orDELETEqueries.
Input:query(string): The SQL modification query
Returns: Number of affected rows or confirmation
-
create_table(enabled only with--allow-write)
Create new tables in the database.
Input:query(string):CREATE TABLESQL statement
Returns: Confirmation of table creation
Schema Tools
-
list_databases
List all databases in the Snowflake instance.
Returns: Array of database names -
list_schemas
List all schemas within a specific database.
Input:database(string): Name of the database
Returns: Array of schema names
-
list_tables
List all tables within a specific database and schema.
Input:database(string): Name of the databaseschema(string): Name of the schema
Returns: Array of table metadata
-
describe_table
View column information for a specific table.
Input:table_name(string): Fully qualified table name (database.schema.table)
Returns: Array of column definitions with names, types, nullability, defaults, and comments
Analysis Tools
append_insight
Add new data insights to the memo resource.
Input:insight(string): Data insight discovered from analysis
Returns: Confirmation of insight addition
Effect: Triggers update ofmemo://insightsresource
Usage with Claude Desktop
Installing via Smithery
To install Snowflake Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install mcp_snowflake_server --client claude
Installing via UVX
Traditional Configuration (Individual Parameters)
"mcpServers": {
"snowflake_pip": {
"command": "uvx",
"args": [
"--python=3.12", // Optional: specify Python version <=3.12
"mcp_snowflake_server",
"--account", "your_account",
"--warehouse", "your_warehouse",
"--user", "your_user",
"--password", "your_password",
"--role", "your_role",
"--database", "your_database",
"--schema", "your_schema"
// Optionally: "--private_key_path", "your_private_key_absolute_path"
// Optionally: "--allow_write"
// Optionally: "--log_dir", "/absolute/path/to/logs"
// Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
// Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
]
}
}
TOML Configuration (Recommended)
"mcpServers": {
"snowflake_production": {
"command": "uvx",
"args": [
"--python=3.12",
"mcp_snowflake_server",
"--connections-file", "/path/to/snowflake_connections.toml",
"--connection-name", "production"
// Optionally: "--allow_write"
// Optionally: "--log_dir", "/absolute/path/to/logs"
// Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
// Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
]
},
"snowflake_staging": {
"command": "uvx",
"args": [
"--python=3.12",
"mcp_snowflake_server",
"--connections-file", "/path/to/snowflake_connections.toml",
"--connection-name", "staging"
]
}
}
Installing Locally
-
Install Claude AI Desktop App
-
Install
uv:
curl -LsSf https://astral.sh/uv/install.sh | sh
- Create a
.envfile with your Snowflake credentials:
SNOWFLAKE_USER="xxx@your_email.com"
SNOWFLAKE_ACCOUNT="xxx"
SNOWFLAKE_ROLE="xxx"
SNOWFLAKE_DATABASE="xxx"
SNOWFLAKE_SCHEMA="xxx"
SNOWFLAKE_WAREHOUSE="xxx"
SNOWFLAKE_PASSWORD="xxx"
SNOWFLAKE_PASSWORD="xxx"
SNOWFLAKE_PRIVATE_KEY_PATH=/absolute/path/key.p8
# Alternatively, use external browser authentication:
# SNOWFLAKE_AUTHENTICATOR="externalbrowser"
-
[Optional] Modify
runtime_config.jsonto set exclusion patterns for databases, schemas, or tables. -
Test locally:
uv --directory /absolute/path/to/mcp_snowflake_server run mcp_snowflake_server
- Add the server to your
claude_desktop_config.json:
Traditional Configuration (Using Environment Variables)
"mcpServers": {
"snowflake_local": {
"command": "/absolute/path/to/uv",
"args": [
"--python=3.12", // Optional
"--directory", "/absolute/path/to/mcp_snowflake_server",
"run", "mcp_snowflake_server"
// Optionally: "--allow_write"
// Optionally: "--log_dir", "/absolute/path/to/logs"
// Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
// Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
]
}
}
TOML Configuration (Recommended)
"mcpServers": {
"snowflake_local": {
"command": "/absolute/path/to/uv",
"args": [
"--python=3.12",
"--directory", "/absolute/path/to/mcp_snowflake_server",
"run", "mcp_snowflake_server",
"--connections-file", "/absolute/path/to/snowflake_connections.toml",
"--connection-name", "development"
// Optionally: "--allow_write"
// Optionally: "--log_dir", "/absolute/path/to/logs"
// Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
// Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
]
}
}
Notes
- By default, write operations are disabled. Enable them explicitly with
--allow-write. - The server supports filtering out specific databases, schemas, or tables via exclusion patterns.
- The server exposes additional per-table context resources if prefetching is enabled.
- The
append_insighttool updates thememo://insightsresource dynamically.
License
MIT
Star History
Repository Owner
User
Repository Details
Programming Languages
Tags
Join Our Newsletter
Stay updated with the latest AI tools, news, and offers by subscribing to our weekly newsletter.
Related MCPs
Discover similar Model Context Protocol servers
Snowflake Cortex AI Model Context Protocol (MCP) Server
Tooling and orchestration for Snowflake Cortex AI via Model Context Protocol.
Provides an MCP server that brings Snowflake Cortex AI, object management, and SQL orchestration to the MCP ecosystem. Enables Cortex Search, Analyst, and Agent services for structured and unstructured data querying, along with automated SQL execution and object management. Designed for integration with MCP clients to streamline AI-powered data workflows and context-sensitive operations within Snowflake environments.
- ⭐ 176
- MCP
- Snowflake-Labs/mcp
simple_snowflake_mcp
Production-ready MCP server for seamless Snowflake data integration.
Simple Snowflake MCP server provides advanced integration with Snowflake databases, facilitating database operations, metadata discovery, and resource monitoring with full compliance to the Model Context Protocol (MCP). It features a comprehensive YAML-based configuration system, robust logging options, and support for resource subscriptions and error handling. Designed for use in production environments, the server offers customizable access controls and is optimized for deployment behind corporate proxies.
- ⭐ 7
- MCP
- YannBrrd/simple_snowflake_mcp
Multi-Database MCP Server (by Legion AI)
Unified multi-database access and AI interaction server with MCP integration.
Multi-Database MCP Server enables seamless access and querying of diverse databases via a unified API, with native support for the Model Context Protocol (MCP). It supports popular databases such as PostgreSQL, MySQL, SQL Server, and more, and is built for integration with AI assistants and agents. Leveraging the MCP Python SDK, it exposes databases as resources, tools, and prompts for intelligent, context-aware interactions, while delivering zero-configuration schema discovery and secure credential management.
- ⭐ 76
- MCP
- TheRaLabs/legion-mcp
SkySQL MCP Server
Serverless MariaDB database management with AI-powered agents via Model Context Protocol.
SkySQL MCP Server implements the Model Context Protocol to provide a robust interface for launching and managing serverless MariaDB and MySQL database instances. It offers capabilities to interact with AI-powered agents for intelligent database operations, execute SQL queries, and manage credentials and security settings. Integration with tools like MCP CLI, Smithery.ai, and Cursor.sh is supported for interactive usage. Designed for efficiency and scalability, it enables streamlined database workflows with advanced AI assistance.
- ⭐ 2
- MCP
- skysqlinc/skysql-mcp
MCP AI SOC Sher
AI-driven SOC Text2SQL framework with security threat analysis
MCP AI SOC Sher is an advanced AI-powered platform that converts natural language prompts into optimized SQL queries using a Model Context Protocol-based server setup. It supports Text2SQL translation, real-time query processing, and security threat analysis across multiple database types. The tool offers multiple interfaces including STDIO, SSE, and REST API for flexible integration, and features in-depth SOC (Security Operations Center) monitoring capabilities. Built-in security features include SQL injection detection, sensitive table monitoring, and configurable security levels.
- ⭐ 5
- MCP
- akramIOT/MCP_AI_SOC_Sher
Supabase MCP Server
Connect Supabase projects to AI assistants using the Model Context Protocol.
Supabase MCP Server enables direct, secure integration between Supabase projects and AI assistants such as Cursor, Claude, and Windsurf. Leveraging the Model Context Protocol, it provides standardized endpoints for external LLMs to perform tasks like managing tables, fetching configurations, and querying data on Supabase. The server supports OAuth 2.1 Dynamic Client Registration and offers easy setup with feature groups and popular client installers for local, cloud, and self-hosted environments.
- ⭐ 2,263
- MCP
- supabase-community/supabase-mcp
Didn't find tool you were looking for?