Open-WebSearch MCP Server
Multi-engine web search MCP server without API keys
Key Features
Use Cases
README
Open-WebSearch MCP Server
🇨🇳 中文 | 🇺🇸 English
A Model Context Protocol (MCP) server based on multi-engine search results, supporting free web search without API keys.
Features
- Web search using multi-engine results
- bing
- baidu
linux.dotemporarily unsupported- csdn
- duckduckgo
- exa
- brave
- juejin
- HTTP proxy configuration support for accessing restricted resources
- No API keys or authentication required
- Returns structured results with titles, URLs, and descriptions
- Configurable number of results per search
- Customizable default search engine
- Support for fetching individual article content
- csdn
- github (README files)
TODO
- Support for
Bing(already supported),DuckDuckGo(already supported),Exa(already supported),Brave(already supported), Google and other search engines - Support for more blogs, forums, and social platforms
- Optimize article content extraction, add support for more sites
Support for GitHub README fetching(already supported)
Installation Guide
NPX Quick Start (Recommended)
The fastest way to get started:
# Basic usage
npx open-websearch@latest
# With environment variables (Linux/macOS)
DEFAULT_SEARCH_ENGINE=duckduckgo ENABLE_CORS=true npx open-websearch@latest
# Windows PowerShell
$env:DEFAULT_SEARCH_ENGINE="duckduckgo"; $env:ENABLE_CORS="true"; npx open-websearch@latest
# Windows CMD
set MODE=stdio && set DEFAULT_SEARCH_ENGINE=duckduckgo && npx open-websearch@latest
# Cross-platform (requires cross-env, Used for local development)
npm install -g open-websearch
npx cross-env DEFAULT_SEARCH_ENGINE=duckduckgo ENABLE_CORS=true open-websearch
Environment Variables:
| Variable | Default | Options | Description |
|---|---|---|---|
ENABLE_CORS |
false |
true, false |
Enable CORS |
CORS_ORIGIN |
* |
Any valid origin | CORS origin configuration |
DEFAULT_SEARCH_ENGINE |
bing |
bing, duckduckgo, exa, brave, baidu, csdn, juejin |
Default search engine |
USE_PROXY |
false |
true, false |
Enable HTTP proxy |
PROXY_URL |
http://127.0.0.1:7890 |
Any valid URL | Proxy server URL |
MODE |
both |
both, http, stdio |
Server mode: both HTTP+STDIO, HTTP only, or STDIO only |
PORT |
3000 |
1-65535 | Server port |
ALLOWED_SEARCH_ENGINES |
empty (all available) | Comma-separated engine names | Limit which search engines can be used; if the default engine is not in this list, the first allowed engine becomes the default |
MCP_TOOL_SEARCH_NAME |
search |
Valid MCP tool name | Custom name for the search tool |
MCP_TOOL_FETCH_LINUXDO_NAME |
fetchLinuxDoArticle |
Valid MCP tool name | Custom name for the Linux.do article fetch tool |
MCP_TOOL_FETCH_CSDN_NAME |
fetchCsdnArticle |
Valid MCP tool name | Custom name for the CSDN article fetch tool |
MCP_TOOL_FETCH_GITHUB_NAME |
fetchGithubReadme |
Valid MCP tool name | Custom name for the GitHub README fetch tool |
MCP_TOOL_FETCH_JUEJIN_NAME |
fetchJuejinArticle |
Valid MCP tool name | Custom name for the Juejin article fetch tool |
Common configurations:
# Enable proxy for restricted regions
USE_PROXY=true PROXY_URL=http://127.0.0.1:7890 npx open-websearch@latest
# Full configuration
DEFAULT_SEARCH_ENGINE=duckduckgo ENABLE_CORS=true USE_PROXY=true PROXY_URL=http://127.0.0.1:7890 PORT=8080 npx open-websearch@latest
Local Installation
- Clone or download this repository
- Install dependencies:
npm install
- Build the server:
npm run build
- Add the server to your MCP configuration:
Cherry Studio:
{
"mcpServers": {
"web-search": {
"name": "Web Search MCP",
"type": "streamableHttp",
"description": "Multi-engine web search with article fetching",
"isActive": true,
"baseUrl": "http://localhost:3000/mcp"
}
}
}
VSCode (Claude Dev Extension):
{
"mcpServers": {
"web-search": {
"transport": {
"type": "streamableHttp",
"url": "http://localhost:3000/mcp"
}
},
"web-search-sse": {
"transport": {
"type": "sse",
"url": "http://localhost:3000/sse"
}
}
}
}
Claude Desktop:
{
"mcpServers": {
"web-search": {
"transport": {
"type": "streamableHttp",
"url": "http://localhost:3000/mcp"
}
},
"web-search-sse": {
"transport": {
"type": "sse",
"url": "http://localhost:3000/sse"
}
}
}
}
NPX Command Line Configuration:
{
"mcpServers": {
"web-search": {
"args": [
"open-websearch@latest"
],
"command": "npx",
"env": {
"MODE": "stdio",
"DEFAULT_SEARCH_ENGINE": "duckduckgo",
"ALLOWED_SEARCH_ENGINES": "duckduckgo,bing,exa"
}
}
}
}
Local STDIO Configuration for Cherry Studio (Windows):
{
"mcpServers": {
"open-websearch-local": {
"command": "node",
"args": ["C:/path/to/your/project/build/index.js"],
"env": {
"MODE": "stdio",
"DEFAULT_SEARCH_ENGINE": "duckduckgo",
"ALLOWED_SEARCH_ENGINES": "duckduckgo,bing,exa"
}
}
}
}
Docker Deployment
Quick deployment using Docker Compose:
docker-compose up -d
Or use Docker directly:
docker run -d --name web-search -p 3000:3000 -e ENABLE_CORS=true -e CORS_ORIGIN=* ghcr.io/aas-ee/open-web-search:latest
Environment variable configuration:
| Variable | Default | Options | Description |
|---|---|---|---|
ENABLE_CORS |
false |
true, false |
Enable CORS |
CORS_ORIGIN |
* |
Any valid origin | CORS origin configuration |
DEFAULT_SEARCH_ENGINE |
bing |
bing, duckduckgo, exa, brave |
Default search engine |
USE_PROXY |
false |
true, false |
Enable HTTP proxy |
PROXY_URL |
http://127.0.0.1:7890 |
Any valid URL | Proxy server URL |
PORT |
3000 |
1-65535 | Server port |
Then configure in your MCP client:
{
"mcpServers": {
"web-search": {
"name": "Web Search MCP",
"type": "streamableHttp",
"description": "Multi-engine web search with article fetching",
"isActive": true,
"baseUrl": "http://localhost:3000/mcp"
},
"web-search-sse": {
"transport": {
"name": "Web Search MCP",
"type": "sse",
"description": "Multi-engine web search with article fetching",
"isActive": true,
"url": "http://localhost:3000/sse"
}
}
}
}
Usage Guide
The server provides four tools: search, fetchLinuxDoArticle, fetchCsdnArticle, and fetchGithubReadme.
search Tool Usage
{
"query": string, // Search query
"limit": number, // Optional: Number of results to return (default: 10)
"engines": string[] // Optional: Engines to use (bing,baidu,linuxdo,csdn,duckduckgo,exa,brave,juejin) default bing
}
Usage example:
use_mcp_tool({
server_name: "web-search",
tool_name: "search",
arguments: {
query: "search content",
limit: 3, // Optional parameter
engines: ["bing", "csdn", "duckduckgo", "exa", "brave", "juejin"] // Optional parameter, supports multi-engine combined search
}
})
Response example:
[
{
"title": "Example Search Result",
"url": "https://example.com",
"description": "Description text of the search result...",
"source": "Source",
"engine": "Engine used"
}
]
fetchCsdnArticle Tool Usage
Used to fetch complete content of CSDN blog articles.
{
"url": string // URL from CSDN search results using the search tool
}
Usage example:
use_mcp_tool({
server_name: "web-search",
tool_name: "fetchCsdnArticle",
arguments: {
url: "https://blog.csdn.net/xxx/article/details/xxx"
}
})
Response example:
[
{
"content": "Example search result"
}
]
fetchLinuxDoArticle Tool Usage
Used to fetch complete content of Linux.do forum articles.
{
"url": string // URL from linuxdo search results using the search tool
}
Usage example:
use_mcp_tool({
server_name: "web-search",
tool_name: "fetchLinuxDoArticle",
arguments: {
url: "https://xxxx.json"
}
})
Response example:
[
{
"content": "Example search result"
}
]
fetchGithubReadme Tool Usage
Used to fetch README content from GitHub repositories.
{
"url": string // GitHub repository URL (supports HTTPS, SSH formats)
}
Usage example:
use_mcp_tool({
server_name: "web-search",
tool_name: "fetchGithubReadme",
arguments: {
url: "https://github.com/Aas-ee/open-webSearch"
}
})
Supported URL formats:
- HTTPS:
https://github.com/owner/repo - HTTPS with .git:
https://github.com/owner/repo.git - SSH:
git@github.com:owner/repo.git - URLs with parameters:
https://github.com/owner/repo?tab=readme
Response example:
[
{
"content": "<div align=\"center\">\n\n# Open-WebSearch MCP Server..."
}
]
fetchJuejinArticle Tool Usage
Used to fetch complete content of Juejin articles.
{
"url": string // Juejin article URL from search results
}
Usage example:
use_mcp_tool({
server_name: "web-search",
tool_name: "fetchJuejinArticle",
arguments: {
url: "https://juejin.cn/post/7520959840199360563"
}
})
Supported URL format:
https://juejin.cn/post/{article_id}
Response example:
[
{
"content": "🚀 开源 AI 联网搜索工具:Open-WebSearch MCP 全新升级,支持多引擎 + 流式响应..."
}
]
Usage Limitations
Since this tool works by scraping multi-engine search results, please note the following important limitations:
-
Rate Limiting:
- Too many searches in a short time may cause the used engines to temporarily block requests
- Recommendations:
- Maintain reasonable search frequency
- Use the limit parameter judiciously
- Add delays between searches when necessary
-
Result Accuracy:
- Depends on the HTML structure of corresponding engines, may fail when engines update
- Some results may lack metadata like descriptions
- Complex search operators may not work as expected
-
Legal Terms:
- This tool is for personal use only
- Please comply with the terms of service of corresponding engines
- Implement appropriate rate limiting based on your actual use case
-
Search Engine Configuration:
- Default search engine can be set via the
DEFAULT_SEARCH_ENGINEenvironment variable - Supported engines: bing, duckduckgo, exa, brave
- The default engine is used when searching specific websites
- Default search engine can be set via the
-
Proxy Configuration:
- HTTP proxy can be configured when certain search engines are unavailable in specific regions
- Enable proxy with environment variable
USE_PROXY=true - Configure proxy server address with
PROXY_URL
Contributing
Welcome to submit issue reports and feature improvement suggestions!
Contributor Guide
If you want to fork this repository and publish your own Docker image, you need to make the following configurations:
GitHub Secrets Configuration
To enable automatic Docker image building and publishing, please add the following secrets in your GitHub repository settings (Settings → Secrets and variables → Actions):
Required Secrets:
GITHUB_TOKEN: Automatically provided by GitHub (no setup needed)
Optional Secrets (for Alibaba Cloud ACR):
ACR_REGISTRY: Your Alibaba Cloud Container Registry URL (e.g.,registry.cn-hangzhou.aliyuncs.com)ACR_USERNAME: Your Alibaba Cloud ACR usernameACR_PASSWORD: Your Alibaba Cloud ACR passwordACR_IMAGE_NAME: Your image name in ACR (e.g.,your-namespace/open-web-search)
CI/CD Workflow
The repository includes a GitHub Actions workflow (.github/workflows/docker.yml) that automatically:
-
Trigger Conditions:
- Push to
mainbranch - Push version tags (
v*) - Manual workflow trigger
- Push to
-
Build and Push to:
- GitHub Container Registry (ghcr.io) - always enabled
- Alibaba Cloud Container Registry - only enabled when ACR secrets are configured
-
Image Tags:
ghcr.io/your-username/open-web-search:latestyour-acr-address/your-image-name:latest(if ACR is configured)
Fork and Publish Steps:
- Fork the repository to your GitHub account
- Configure secrets (if you need ACR publishing):
- Go to Settings → Secrets and variables → Actions in your forked repository
- Add the ACR-related secrets listed above
- Push changes to the
mainbranch or create version tags - GitHub Actions will automatically build and push your Docker image
- Use your image, update the Docker command:
bash
docker run -d --name web-search -p 3000:3000 -e ENABLE_CORS=true -e CORS_ORIGIN=* ghcr.io/your-username/open-web-search:latest
Notes:
- If you don't configure ACR secrets, the workflow will only publish to GitHub Container Registry
- Make sure your GitHub repository has Actions enabled
- The workflow will use your GitHub username (converted to lowercase) as the GHCR image name
Star History
If you find this project helpful, please consider giving it a ⭐ Star!
Star History
Repository Owner
User
Repository Details
Programming Languages
Tags
Join Our Newsletter
Stay updated with the latest AI tools, news, and offers by subscribing to our weekly newsletter.
Related MCPs
Discover similar Model Context Protocol servers
Bing Search MCP Server
MCP server enabling Bing-powered web, news, and image search for AI assistants.
Bing Search MCP Server provides a Model Context Protocol (MCP) compliant interface for integrating Microsoft Bing Search API capabilities with AI assistants. The server allows AI clients to perform web, news, and image searches programmatically, with features like rate limiting and comprehensive error handling. Designed for easy deployment, it supports integration with clients such as Claude Desktop and Cursor for enhanced search access. Secure configuration via environment variables enables safe use of API keys.
- ⭐ 65
- MCP
- leehanchung/bing-search-mcp
SearXNG MCP Server
MCP-compliant server integrating the SearXNG API for advanced web search capabilities
SearXNG MCP Server implements the Model Context Protocol and integrates the SearXNG API to provide extensive web search functionalities. It features intelligent caching, advanced content extraction, and multiple configurable search parameters such as language, time range, and safe search levels. The server exposes tools for both web searching and URL content reading, supporting detailed output customization through input parameters. Designed for seamless MCP deployments, it supports Docker and NPX-based installation with rich configuration options.
- ⭐ 321
- MCP
- ihor-sokoliuk/mcp-searxng
Search1API MCP Server
MCP server enabling search and crawl functions via Search1API.
Search1API MCP Server is an implementation of the Model Context Protocol (MCP) that provides search and crawl services using the Search1API. It allows seamless integration with MCP-compatible clients, including LibreChat and various developer tools, by managing API key configuration through multiple methods. Built with Node.js, it supports both standalone operation and Docker-based deployment for integration in broader AI toolchains.
- ⭐ 157
- MCP
- fatwang2/search1api-mcp
Parallel Search MCP
Integrate Parallel Search API with any MCP-compatible LLM client.
Parallel Search MCP provides an interface to use the Parallel Search API seamlessly from any Model Context Protocol (MCP)-compatible language model client. It serves as a proxy server that connects requests to the search API, adding the necessary support for authentication and MCP compatibility. The tool is designed for everyday web search tasks and facilitates easy web integration for LLMs via standardized MCP infrastructure.
- ⭐ 3
- MCP
- parallel-web/search-mcp
OpenAI WebSearch MCP Server
Intelligent web search with OpenAI reasoning model support, fully MCP-compatible.
OpenAI WebSearch MCP Server provides advanced web search functionality integrated with OpenAI's latest reasoning models, such as gpt-5 and o3-series. It features full compatibility with the Model Context Protocol, enabling easy integration into AI assistants that require up-to-date information and contextual awareness. Built with flexible configuration options, smart reasoning effort controls, and support for location-based search customization. Suitable for environments such as Claude Desktop, Cursor, and automated research workflows.
- ⭐ 75
- MCP
- ConechoAI/openai-websearch-mcp
kagi-server MCP Server
TypeScript-based MCP server for Kagi Search API integration.
Kagi-server MCP Server provides a TypeScript implementation of a Model Context Protocol (MCP) server that integrates with the Kagi Search API. It enables standardized tool access for performing web searches and plans for features like summarization, FastGPT integration, and enriched news results. Compatible with Claude Desktop and Smithery installations, it supports secure environment configuration and offers developer utilities such as automatic build and debugging via MCP Inspector.
- ⭐ 40
- MCP
- ac3xx/mcp-servers-kagi
Didn't find tool you were looking for?